Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Clin Transl Sci ; 16(7): 1243-1257, 2023 07.
Article in English | MEDLINE | ID: covidwho-2304186

ABSTRACT

Hydroxychloroquine (HCQ) is Food and Drug Administration (FDA)-approved for malaria, systemic and chronic discoid lupus erythematosus, and rheumatoid arthritis. Because HCQ has a proposed multimodal mechanism of action and a well-established safety profile, it is often investigated as a repurposed therapeutic for a range of indications. There is a large degree of uncertainty in HCQ pharmacokinetic (PK) parameters which complicates dose selection when investigating its use in new disease states. Complications with HCQ dose selection emerged as multiple clinical trials investigated HCQ as a potential therapeutic in the early stages of the COVID-19 pandemic. In addition to uncertainty in baseline HCQ PK parameters, it was not clear if disease-related consequences of SARS-CoV-2 infection/COVID-19 would be expected to impact the PK of HCQ and its primary metabolite desethylhydroxychloroquine (DHCQ). To address the question whether SARS-CoV-2 infection/COVID-19 impacted HCQ and DHCQ PK, dried blood spot samples were collected from SARS-CoV-2(-)/(+) participants administered HCQ. When a previously published physiologically based pharmacokinetic (PBPK) model was used to fit the data, the variability in exposure of HCQ and DHCQ was not adequately captured and DHCQ concentrations were overestimated. Improvements to the previous PBPK model were made by incorporating the known range of blood to plasma concentration ratios (B/P) for each compound, adjusting HCQ and DHCQ distribution settings, and optimizing DHCQ clearance. The final PBPK model adequately captured the HCQ and DHCQ concentrations observed in SARS-CoV-2(-)/(+)participants, and incorporating COVID-19-associated changes in cytochrome P450 activity did not further improve model performance for the SARS-CoV-2(+) population.


Subject(s)
COVID-19 , Hydroxychloroquine , Humans , Hydroxychloroquine/adverse effects , Hydroxychloroquine/pharmacokinetics , SARS-CoV-2 , Pandemics , COVID-19 Drug Treatment
2.
BMC Public Health ; 23(1): 174, 2023 01 26.
Article in English | MEDLINE | ID: covidwho-2214566

ABSTRACT

BACKGROUND: Prioritization of higher-risk people for COVID-19 vaccination could prevent more deaths, but could slow vaccination speed. We used mathematical modeling to examine the trade-off between vaccination speed and prioritization for individuals age 65+ and essential workers. METHODS: We used a stochastic, discrete-time susceptible-exposed-infected-recovered (SEIR) model with age- and comorbidity-adjusted COVID-19 outcomes (infections, hospitalizations, and deaths). The model was calibrated to COVID-19 hospitalizations, ICU census, and deaths in NYC. We assumed 10,000 vaccinations per day, initially restricted to healthcare workers and nursing home populations, and subsequently expanded to other populations at alternative times (4, 5, or 6 weeks after vaccine launch) and speeds (20,000, 50,000, 100,000, or 150,000 vaccinations per day), as well as prioritization options (+/- prioritization of people age 65+ and essential workers). In sensitivity analyses, we examined the effect of a SARS-COV-2 variant with greater transmissibility. RESULTS: To be beneficial, prioritization must not create a bottleneck that decreases vaccination speed by > 50% without a more transmissible variant, or by > 33% with the emergence of the more transmissible variant. More specifically, prioritizing people age 65+ and essential workers increased the number of lives saved per vaccine dose delivered: 3000 deaths could be averted by delivering 83,000 vaccinations per day without prioritization or 50,000 vaccinations per day with prioritization. Other tradeoffs involve vaccination speed and timing. Compared to the slowest-examined vaccination speed of 20,000 vaccinations per day, achieving the fastest-examined vaccination speed of 150,000 vaccinations per day would avert additional 313,700 (28.6%) infections and 1693 (24.1%) deaths. Emergence of a more transmissible variant would double COVID-19 infections, hospitalizations, and deaths over the first 6 months of vaccination. The fastest-examined vaccination speed could only offset the harm of the more transmissible variant if achieved within 5 weeks of vaccine launch. CONCLUSIONS: Faster vaccination speed with sooner vaccination expansion would save more lives. Prioritization of COVID-19 vaccines to higher-risk populations would be more beneficial only if it does not create an excessive vaccine delivery bottleneck.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Aged , New York City , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination
3.
J Med Virol ; 94(12): 6091-6096, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2059508

ABSTRACT

Two randomized controlled trials demonstrated no clinical benefit of hydroxychloroquine (HCQ) for either postexposure prophylaxis or early treatment of SARS-CoV-2 infection. Using data from these studies, we calculated the time-weighted average change from baseline SARS-CoV-2 viral load and demonstrated that HCQ did not affect viral clearance.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Humans , Hydroxychloroquine/therapeutic use , Viral Load
4.
Public Health Rep ; 137(2_suppl): 76S-82S, 2022.
Article in English | MEDLINE | ID: covidwho-1938154

ABSTRACT

Health authorities encouraged the use of digital contact tracing mobile applications (apps) during the COVID-19 pandemic, but the level of adoption was low because apps offered few direct benefits to counterbalance risks to personal privacy. Adoption of such apps could improve if they provided benefits to users. NOVID (COVID-19 Radar), a smartphone app, provided users with personalized data on social proximity of COVID-19 cases and exposed contacts. We analyzed uptake of NOVID at the Georgia Institute of Technology (Georgia Tech) during the 2020-2021 academic year. Data included anonymous NOVID users who self-identified with Georgia Tech and their first- and second-degree network contacts. NOVID achieved 13%-30% adoption at Georgia Tech. Because of technical challenges, adoption waned after an initial peak. The largest increases in adoption (from 41 to 3704) followed administrative promotion of NOVID. Adoption increased modestly (from 2512 to 2661) after faculty- and student-led promotion, such as distribution of door hangers and a public seminar. Two-thirds of on-campus NOVID users were connected to a large network of other users, enabling them to receive data on social proximity of COVID-19 cases and exposed contacts. Network cohesion was observed to emerge rapidly when adoption rates passed just 10%, consistent with estimates from network theory. The key lesson learned in this case study is that top-down administrative promotion outperforms bottom-up grassroots promotion. Relatively high levels of adoption and network cohesion, despite technical challenges during the Georgia Tech pilot of NOVID, illustrate the promise of digital contact tracing when apps provide privacy and inherently beneficial personalized data to their users, especially in regions where Google Apple Exposure Notification is not available.


Subject(s)
COVID-19 , Mobile Applications , Humans , COVID-19/epidemiology , Pandemics , Universities , Contact Tracing
5.
Sci Rep ; 12(1): 10312, 2022 06 20.
Article in English | MEDLINE | ID: covidwho-1900648

ABSTRACT

Stay-at-home restrictions such as closure of non-essential businesses were effective at reducing SARS-CoV-2 transmission in New York City (NYC) in the spring of 2020. Relaxation of these restrictions was desirable for resuming economic and social activities, but could only occur in conjunction with measures to mitigate the expected resurgence of new infections, in particular social distancing and mask-wearing. We projected the impact of individuals' adherence to social distancing and mask-wearing on the duration, frequency, and recurrence of stay-at-home restrictions in NYC. We applied a stochastic discrete time-series model to simulate community transmission and household secondary transmission in NYC. The model was calibrated to hospitalizations, ICU admissions, and COVID-attributable deaths over March-July 2020 after accounting for the distribution of age and chronic health conditions in NYC. We projected daily new infections and hospitalizations up to May 31, 2021 under the different levels of adherence to social distancing and mask-wearing after relaxation of stay-at-home restrictions. We assumed that the relaxation of stay-at-home policies would occur in the context of adaptive reopening, where a new hospitalization rate of ≥ 2 per 100,000 residents would trigger reinstatement of stay-at-home restrictions while a new hospitalization rate of ≤ 0.8 per 100,000 residents would trigger relaxation of stay-at-home restrictions. Without social distancing and mask-wearing, simulated relaxation of stay-at-home restrictions led to epidemic resurgence and necessary reinstatement of stay-at-home restrictions within 42 days. NYC would have stayed fully open for 26% of the time until May 31, 2021, alternating reinstatement and relaxation of stay-at-home restrictions in four cycles. At a low (50%) level of adherence to mask-wearing, NYC would have needed to implement stay-at-home restrictions between 8% and 32% of the time depending on individual adherence to social distancing. At moderate to high levels of adherence to mask-wearing without social distancing, NYC would have needed to implement stay-at-home restrictions. In threshold analyses, avoiding reinstatement of stay-at-home restrictions required a minimum of 60% adherence to mask-wearing at 50% adherence to social distancing. With low adherence to mask-wearing and social distancing, reinstatement of stay-at-home restrictions in NYC was inevitable. High levels of adherence to social distancing and mask-wearing could have attributed to avoiding recurrent surges without reinstatement of stay-at-home restrictions.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , New York City/epidemiology , Pandemics/prevention & control , Physical Distancing , SARS-CoV-2
6.
Clin Infect Dis ; 75(1): e1180-e1183, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1816034

ABSTRACT

Coronavirus disease 2019 symptom definitions rarely include symptom severity. We collected daily nasal swab samples and symptom diaries from contacts of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) case patients. Requiring ≥1 moderate or severe symptom reduced sensitivity to predict SARS-CoV-2 shedding from 60.0% (95% confidence interval [CI], 52.9%-66.7%) to 31.5% (95% CI, 25.7%- 38.0%) but increased specificity from 77.5% (95% CI, 75.3%-79.5%) to 93.8% (95% CI, 92.7%-94.8%).


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19 Testing , Humans , Longitudinal Studies , SARS-CoV-2
7.
J Infect Dis ; 226(5): 788-796, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-1774394

ABSTRACT

While detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by diagnostic reverse-transcription polymerase chain reaction (RT-PCR) is highly sensitive for viral RNA, the nucleic acid amplification of subgenomic RNAs (sgRNAs) that are the product of viral replication may more accurately identify replication. We characterized the diagnostic RNA and sgRNA detection by RT-PCR from nasal swab samples collected daily by participants in postexposure prophylaxis or treatment studies for SARS-CoV-2. Among 1932 RT-PCR-positive swab samples with sgRNA tests, 40% (767) had detectable sgRNA. Above a diagnostic RNA viral load (VL) threshold of 5.1 log10 copies/mL, 96% of samples had detectable sgRNA with VLs that followed a linear trend. The trajectories of diagnostic RNA and sgRNA VLs differed, with 80% peaking on the same day but duration of sgRNA detection being shorter (8 vs 14 days). With a large sample of daily swab samples we provide comparative sgRNA kinetics and a diagnostic RNA threshold that correlates with replicating virus independent of symptoms or duration of illness.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Kinetics , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Viral Load
8.
JAMA Netw Open ; 5(2): e2148325, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1680211

ABSTRACT

Importance: Racial and ethnic diversity among study participants is associated with improved generalizability of clinical trial results and may address inequities in evidence that informs public health strategies. Novel strategies are needed for equitable access and recruitment of diverse clinical trial populations. Objective: To investigate demographic and geographical location data for participants in 2 remote COVID-19 clinical trials with online recruitment and compare with those of a contemporaneous clinic-based COVID-19 study. Design, Setting, and Participants: This cohort study was conducted using data from 3 completed, prospective randomized clinical trials conducted at the same time: 2 remotely conducted studies (the Early Treatment Study and Hydroxychloroquine COVID-19 Postexposure Prophylaxis [PEP] Study) and 1 clinic-based study of convalescent plasma (the Expanded Access to Convalescent Plasma for the Treatment of Patients With COVID-19 study). Data were collected from March to August 2020 with 1 to 28 days of participant follow-up. All studies had clinical sites in Seattle, Washington; the 2 remote trials also had collaborating sites in New York, New York; Syracuse, New York; Baltimore, Maryland; Boston, Massachusetts; Chicago, Illinois; New Orleans, Louisiana; and Los Angeles, California. Two remote trials with inclusive social media strategies enrolled 929 participants with recent SARS-CoV-2 exposure (Hydroxychloroquine COVID-19 PEP Trial) and 231 participants with COVID-19 infection (Early Treatment Study); the clinic-based Expanded Access to Convalescent Plasma for the Treatment of Patients With COVID-19 study enrolled 250 participants with recent COVID-19 infection. Data were analyzed from April to August 2021. Interventions: Remote trials used inclusive social media strategies and clinician referral for recruitment and telehealth, courier deliveries, and self-collected nasal swabs for remotely conducted study visits. For the clinic-based study, participants were recruited via clinician referral and attended in-person visits. Main Outcomes and Measures: Google Analytics data were used to measure online participant engagement and recruitment. Participant demographics and geographical location data from remote trials were pooled and compared with those of the clinic-based study. Statistical comparison of demographic data was limited to participants with COVID infections (ie, those in the remotely conducted Early Treatment Study vs those in the clinic-based study) to improve accuracy of comparison given that the Hydroxychloroquine COVID-19 PEP Trial enrolled participants with COVID-19 exposures and thus had different enrollment criteria. Results: A total of 1410 participants were included. Among 1160 participants in remote trials and 250 participants in the clinic-based trial, the mean (range) age of participants was 39 (18-80) years vs 50 (19-79) years and 676 individuals (58.3%) vs 131 individuals (52.4%) reported female sex. The Early Treatment Study with inclusive social media strategies enrolled 231 participants in 41 US states with increased rates of racial, ethnic, and geographic diversity compared with participants in the clinic-based study. Among 228 participants in the remotely conducted Early Treatment Study with race data vs participants in the clinic-based study, 39 individuals (17.1%) vs 1 individual (0.4%) identified as Alaska Native or American Indian, 11 individuals (4.8%) vs 22 individuals (8.8%) identified as Asian, 26 individuals (11.4%) vs 4 individuals (1.6%) identified as Black, 3 individuals (1.3%) vs 1 individual identified as Native Hawaiian or Pacific Islander, 117 individuals (51.3%) vs 214 individuals (85.6%) identified as White, and 32 individuals (14.0%) vs 8 individuals (3.2%) identified as other race (P < .001). Among 230 individuals in the Early Treatment Study vs 236 individuals in the clinic-based trial with ethnicity data, 71 individuals (30.9%) vs 11 individuals (4.7%) identified as Hispanic or Latinx (P<.001). There were 29 individuals in the Early Treatment Study with nonurban residences (ie, rural, small town, or peri-urban; 12.6%) vs 6 of 248 individuals in the clinic-based trial with residence data (2.4%) (P < .001). In remote trial online recruitment, the highest engagement was with advertisements on social media platforms; among 125 147 unique users with age demographics who clicked on online recruitment advertisements, 84 188 individuals (67.3%) engaged via Facebook. Conclusions and Relevance: These findings suggest that remote clinical trials with online advertising may be considered as a strategy to improve diversity among clinical trial participants.


Subject(s)
COVID-19/ethnology , Patient Selection , Randomized Controlled Trials as Topic , Adult , Cohort Studies , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2
9.
JAMA Netw Open ; 5(1): e2142796, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1615909

ABSTRACT

Importance: The SARS-CoV-2 viral trajectory has not been well characterized in incident infections. These data are needed to inform natural history, prevention practices, and therapeutic development. Objective: To characterize early SARS-CoV-2 viral RNA load (hereafter referred to as viral load) in individuals with incident infections in association with COVID-19 symptom onset and severity. Design, Setting, and Participants: This prospective cohort study was a secondary data analysis of a remotely conducted study that enrolled 829 asymptomatic community-based participants recently exposed (<96 hours) to persons with SARS-CoV-2 from 41 US states from March 31 to August 21, 2020. Two cohorts were studied: (1) participants who were SARS-CoV-2 negative at baseline and tested positive during study follow-up, and (2) participants who had 2 or more positive swabs during follow-up, regardless of the initial (baseline) swab result. Participants collected daily midturbinate swab samples for SARS-CoV-2 RNA detection and maintained symptom diaries for 14 days. Exposure: Laboratory-confirmed SARS-CoV-2 infection. Main Outcomes and Measures: The observed SARS-CoV-2 viral load among incident infections was summarized, and piecewise linear mixed-effects models were used to estimate the characteristics of viral trajectories in association with COVID-19 symptom onset and severity. Results: A total of 97 participants (55 women [57%]; median age, 37 years [IQR, 27-52 years]) developed incident infections during follow-up. Forty-two participants (43%) had viral shedding for 1 day (median peak viral load cycle threshold [Ct] value, 38.5 [95% CI, 38.3-39.0]), 18 (19%) for 2 to 6 days (median Ct value, 36.7 [95% CI, 30.2-38.1]), and 31 (32%) for 7 days or more (median Ct value, 18.3 [95% CI, 17.4-22.0]). The cycle threshold value has an inverse association with viral load. Six participants (6%) had 1 to 6 days of viral shedding with censored duration. The peak mean (SD) viral load was observed on day 3 of shedding (Ct value, 33.8 [95% CI, 31.9-35.6]). Based on the statistical models fitted to 129 participants (60 men [47%]; median age, 38 years [IQR, 25-54 years]) with 2 or more SARS-CoV-2-positive swab samples, persons reporting moderate or severe symptoms tended to have a higher peak mean viral load than those who were asymptomatic (Ct value, 23.3 [95% CI, 22.6-24.0] vs 30.7 [95% CI, 29.8-31.4]). Mild symptoms generally started within 1 day of peak viral load, and moderate or severe symptoms 2 days after peak viral load. All 535 sequenced samples detected the G614 variant (Wuhan strain). Conclusions and Relevance: This cohort study suggests that having incident SARS-CoV-2 G614 infection was associated with a rapid viral load peak followed by slower decay. COVID-19 symptom onset generally coincided with peak viral load, which correlated positively with symptom severity. This longitudinal evaluation of the SARS-CoV-2 G614 with frequent molecular testing serves as a reference for comparing emergent viral lineages to inform clinical trial designs and public health strategies to contain the spread of the virus.


Subject(s)
COVID-19/virology , RNA, Viral , SARS-CoV-2 , Severity of Illness Index , Viral Load , Virus Shedding , Adult , COVID-19/complications , Female , Humans , Incidence , Longitudinal Studies , Male , Middle Aged , Molecular Diagnostic Techniques/methods , Polymerase Chain Reaction/methods , Prospective Studies , Serologic Tests
10.
Annu Rev Public Health ; 43: 397-418, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1613116

ABSTRACT

Infectious disease transmission is a nonlinear process with complex, sometimes unintuitive dynamics. Modeling can transform information about a disease process and its parameters into quantitative projections that help decision makers compare public health response options. However, modelers face methodologic challenges, data challenges, and communication challenges, which are exacerbated under the time constraints of a public health emergency. We review methods, applications, challenges and opportunities for real-time infectious disease modeling during public health emergencies, with examples drawn from the two deadliest pandemics in recent history: HIV/AIDS and coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/epidemiology , Communicable Diseases/epidemiology , Decision Making , Forecasting , Humans , Public Health
11.
PLoS One ; 16(12): e0260820, 2021.
Article in English | MEDLINE | ID: covidwho-1581771

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has caused widespread disruptions including to health services. In the early response to the pandemic many countries restricted population movements and some health services were suspended or limited. In late 2020 and early 2021 some countries re-imposed restrictions. Health authorities need to balance the potential harms of additional SARS-CoV-2 transmission due to contacts associated with health services against the benefits of those services, including fewer new HIV infections and deaths. This paper examines these trade-offs for select HIV services. METHODS: We used four HIV simulation models (Goals, HIV Synthesis, Optima HIV and EMOD) to estimate the benefits of continuing HIV services in terms of fewer new HIV infections and deaths. We used three COVID-19 transmission models (Covasim, Cooper/Smith and a simple contact model) to estimate the additional deaths due to SARS-CoV-2 transmission among health workers and clients. We examined four HIV services: voluntary medical male circumcision, HIV diagnostic testing, viral load testing and programs to prevent mother-to-child transmission. We compared COVID-19 deaths in 2020 and 2021 with HIV deaths occurring now and over the next 50 years discounted to present value. The models were applied to countries with a range of HIV and COVID-19 epidemics. RESULTS: Maintaining these HIV services could lead to additional COVID-19 deaths of 0.002 to 0.15 per 10,000 clients. HIV-related deaths averted are estimated to be much larger, 19-146 discounted deaths per 10,000 clients. DISCUSSION: While there is some additional short-term risk of SARS-CoV-2 transmission associated with providing HIV services, the risk of additional COVID-19 deaths is at least 100 times less than the HIV deaths averted by those services. Ministries of Health need to take into account many factors in deciding when and how to offer essential health services during the COVID-19 pandemic. This work shows that the benefits of continuing key HIV services are far larger than the risks of additional SARS-CoV-2 transmission.


Subject(s)
COVID-19/transmission , Health Services Accessibility/trends , Health Services/trends , COVID-19/complications , COVID-19/epidemiology , HIV Infections/complications , HIV Infections/epidemiology , HIV Infections/therapy , HIV-1/pathogenicity , Health Services Administration , Humans , Models, Theoretical , Pandemics/prevention & control , Risk Assessment/methods , SARS-CoV-2/pathogenicity
13.
Emerg Infect Dis ; 27(11): 2753-2760, 2021 11.
Article in English | MEDLINE | ID: covidwho-1371301

ABSTRACT

We reviewed the timeline of key policies for control of the coronavirus disease epidemic and determined their impact on the epidemic and hospital burden in South Korea. Using a discrete stochastic transmission model, we estimated that multilevel policies, including extensive testing, contact tracing, and quarantine, reduced contact rates by 90% and rapidly decreased the epidemic in Daegu and nationwide during February‒March 2020. Absence of these prompt responses could have resulted in a >10-fold increase in infections, hospitalizations, and deaths by May 15, 2020, relative to the status quo. The model suggests that reallocation of persons who have mild or asymptomatic cases to community treatment centers helped avoid overwhelming hospital capacity and enabled healthcare workers to provide care for more severely and critically ill patients in hospital beds and negative-pressure intensive care units. As small outbreaks continue to occur, contact tracing and maintenance of hospital capacity are needed.


Subject(s)
COVID-19 , Epidemics , Cost of Illness , Humans , Policy , Republic of Korea/epidemiology , SARS-CoV-2
14.
Ann Intern Med ; 174(3): 344-352, 2021 03.
Article in English | MEDLINE | ID: covidwho-1190610

ABSTRACT

BACKGROUND: Effective prevention against coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently limited to nonpharmaceutical strategies. Laboratory and observational data suggested that hydroxychloroquine had biological activity against SARS-CoV-2, potentially permitting its use for prevention. OBJECTIVE: To test hydroxychloroquine as postexposure prophylaxis for SARS-CoV-2 infection. DESIGN: Household-randomized, double-blind, controlled trial of hydroxychloroquine postexposure prophylaxis. (ClinicalTrials.gov: NCT04328961). SETTING: National U.S. multicenter study. PARTICIPANTS: Close contacts recently exposed (<96 hours) to persons with diagnosed SARS-CoV-2 infection. INTERVENTION: Hydroxychloroquine (400 mg/d for 3 days followed by 200 mg/d for 11 days) or ascorbic acid (500 mg/d followed by 250 mg/d) as a placebo-equivalent control. MEASUREMENTS: Participants self-collected mid-turbinate swabs daily (days 1 to 14) for SARS-CoV-2 polymerase chain reaction (PCR) testing. The primary outcome was PCR-confirmed incident SARS-CoV-2 infection among persons who were SARS-CoV-2 negative at enrollment. RESULTS: Between March and August 2020, 671 households were randomly assigned: 337 (407 participants) to the hydroxychloroquine group and 334 (422 participants) to the control group. Retention at day 14 was 91%, and 10 724 of 11 606 (92%) expected swabs were tested. Among the 689 (89%) participants who were SARS-CoV-2 negative at baseline, there was no difference between the hydroxychloroquine and control groups in SARS-CoV-2 acquisition by day 14 (53 versus 45 events; adjusted hazard ratio, 1.10 [95% CI, 0.73 to 1.66]; P > 0.20). The frequency of participants experiencing adverse events was higher in the hydroxychloroquine group than the control group (66 [16.2%] versus 46 [10.9%], respectively; P = 0.026). LIMITATION: The delay between exposure, and then baseline testing and the first dose of hydroxychloroquine or ascorbic acid, was a median of 2 days. CONCLUSION: This rigorous randomized controlled trial among persons with recent exposure excluded a clinically meaningful effect of hydroxychloroquine as postexposure prophylaxis to prevent SARS-CoV-2 infection. PRIMARY FUNDING SOURCE: Bill & Melinda Gates Foundation.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/prevention & control , Hydroxychloroquine/therapeutic use , Post-Exposure Prophylaxis , Adolescent , Adult , Aged , Aged, 80 and over , Antiviral Agents/adverse effects , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Double-Blind Method , Female , Humans , Hydroxychloroquine/adverse effects , Male , Middle Aged , SARS-CoV-2 , Time Factors , Treatment Outcome , United States , Young Adult
15.
EClinicalMedicine ; 33: 100773, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1103840

ABSTRACT

BACKGROUND: Treatment options for outpatients with COVID-19 could reduce morbidity and prevent SARS-CoV-2 transmission. METHODS: In this randomized, double-blind, three-arm (1:1:1) placebo-equivalent controlled trial conducted remotely throughout the United States, adult outpatients with laboratory-confirmed SARS-CoV-2 infection were recruited. Participants were randomly assigned to receive hydroxychloroquine (HCQ) (400 mg BID x1day, followed by 200 mg BID x9days) with or without azithromycin (AZ) (500 mg, then 250 mg daily x4days) or placebo-equivalent (ascorbic acid (HCQ) and folic acid (AZ)), stratified by risk for progression to severe COVID-19 (high-risk vs. low-risk). Self-collected nasal swabs for SARS-CoV-2 PCR, FLUPro symptom surveys, EKGs and vital signs were collected daily. Primary endpoints were: (a) 14-day progression to lower respiratory tract infection (LRTI), 28-day COVID-19 related hospitalization, or death; (b) 14-day time to viral clearance; secondary endpoints included time to symptom resolution (ClinicalTrials.gov: NCT04354428). Due to the low rate of clinical outcomes, the study was terminated for operational futility. FINDINGS: Between 15th April and 27th July 2020, 231 participants were enrolled and 219 initiated medication a median of 5.9 days after symptom onset. Among 129 high-risk participants, incident LRTI occurred in six (4.7%) participants (two control, four HCQ/AZ) and COVID-19 related hospitalization in seven (5.4%) (four control, one HCQ, two HCQ/AZ); no LRTI and two (2%) hospitalizations occurred in the 102 low-risk participants (one HCQ, one HCQ/AZ). There were no deaths. Among 152 participants with viral shedding at enrollment, median time to clearance was 5 days (95% CI=4-6) in HCQ, 6 days (95% CI=4-8) in HCQ/AZ, and 8 days (95% CI=6-10) in control. Viral clearance was faster in HCQ (HR=1.62, 95% CI=1.01-2.60, p = 0.047) but not HCQ/AZ (HR=1.25, p = 0.39) compared to control. Among 197 participants who met the COVID-19 definition at enrollment, time to symptom resolution did not differ by group (HCQ: HR=1.02, 95% CI-0.63-1.64, p = 0.95, HCQ/AZ: HR=0.91, 95% CI=0.57-1.45, p = 0.70). INTERPRETATION: Neither HCQ nor HCQ/AZ shortened the clinical course of outpatients with COVID-19, and HCQ, but not HCQ/AZ, had only a modest effect on SARS-CoV-2 viral shedding. HCQ and HCQ/AZ are not effective therapies for outpatient treatment of SARV-CoV-2 infection. FUNDING: The COVID-19 Early Treatment Study was funded by the Bill & Melinda Gates Foundation (INV-017062) through the COVID-19 Therapeutics Accelerator. University of Washington Institute of Translational Health Science (ITHS) grant support (UL1 TR002319), KL2 TR002317, and TL1 TR002318 from NCATS/NIH funded REDCap. The content is solely the responsibility of the authors and does not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated. PAN and MJA were supported by the Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program.Trial registration ClinicalTrials.gov number NCT04354428.

17.
Risk Manag Healthc Policy ; 13: 2571-2581, 2020.
Article in English | MEDLINE | ID: covidwho-940130

ABSTRACT

OBJECTIVE: To identify risk factors for intensive care unit (ICU) admission and mechanical ventilator usage among confirmed coronavirus disease (COVID-19) patients and estimate the effects of mitigation efforts on ICU capacity in Korea. PATIENTS AND METHODS: Data on profiles and medical history of all confirmed COVID-19 patients in the past 1 year were extracted from the Korean National Health Insurance System's claims database to assess risk factors for ICU admission and ventilator use. We used a time-series epidemic model to estimate the ICU census in Daegu from the reported hospital data. FINDINGS: Multivariate regression analysis revealed male sex, old age, and residing in Daegu city as significant risk factors for ICU admission. The number of patients requiring ICU admission exceeded the bed capacity across all Daegu hospitals before March 9, 2020, and therefore, critically ill patients were transferred to nearby hospitals outside Daegu. This finding was consistent with our prediction that the ICU census in Daegu would peak on March 16, 2020, at 160 through mitigation efforts, without which it would have reached 300 by late March 2020. CONCLUSION: Older age and male sex were risk factors for ICU admission. In addition, the geographic location of the hospital seems to contribute to the severity of the COVID-19 patients admitted to the ICU and to the ICU capacity.

18.
Lancet HIV ; 7(9): e629-e640, 2020 09.
Article in English | MEDLINE | ID: covidwho-695906

ABSTRACT

BACKGROUND: The COVID-19 pandemic could lead to disruptions to provision of HIV services for people living with HIV and those at risk of acquiring HIV in sub-Saharan Africa, where UNAIDS estimated that more than two-thirds of the approximately 38 million people living with HIV resided in 2018. We aimed to predict the potential effects of such disruptions on HIV-related deaths and new infections in sub-Saharan Africa. METHODS: In this modelling study, we used five well described models of HIV epidemics (Goals, Optima HIV, HIV Synthesis, an Imperial College London model, and Epidemiological MODeling software [EMOD]) to estimate the effect of various potential disruptions to HIV prevention, testing, and treatment services on HIV-related deaths and new infections in sub-Saharan Africa lasting 6 months over 1 year from April 1, 2020. We considered scenarios in which disruptions affected 20%, 50%, and 100% of the population. FINDINGS: A 6-month interruption of supply of antiretroviral therapy (ART) drugs across 50% of the population of people living with HIV who are on treatment would be expected to lead to a 1·63 times (median across models; range 1·39-1·87) increase in HIV-related deaths over a 1-year period compared with no disruption. In sub-Saharan Africa, this increase amounts to a median excess of HIV deaths, across all model estimates, of 296 000 (range 229 023-420 000) if such a high level of disruption occurred. Interruption of ART would increase mother-to-child transmission of HIV by approximately 1·6 times. Although an interruption in the supply of ART drugs would have the largest impact of any potential disruptions, effects of poorer clinical care due to overstretched health facilities, interruptions of supply of other drugs such as co-trimoxazole, and suspension of HIV testing would all have a substantial effect on population-level mortality (up to a 1·06 times increase in HIV-related deaths over a 1-year period due to disruptions affecting 50% of the population compared with no disruption). Interruption to condom supplies and peer education would make populations more susceptible to increases in HIV incidence, although physical distancing measures could lead to reductions in risky sexual behaviour (up to 1·19 times increase in new HIV infections over a 1-year period if 50% of people are affected). INTERPRETATION: During the COVID-19 pandemic, the primary priority for governments, donors, suppliers, and communities should focus on maintaining uninterrupted supply of ART drugs for people with HIV to avoid additional HIV-related deaths. The provision of other HIV prevention measures is also important to prevent any increase in HIV incidence. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
Anti-HIV Agents/supply & distribution , Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , HIV Infections/epidemiology , Models, Statistical , Pandemics , Pneumonia, Viral/epidemiology , Africa South of the Sahara/epidemiology , Anti-HIV Agents/therapeutic use , Antiretroviral Therapy, Highly Active , COVID-19 , Condoms/supply & distribution , Coronavirus Infections/mortality , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Global Health/trends , HIV Infections/mortality , HIV Infections/transmission , HIV Infections/virology , HIV-1/drug effects , HIV-1/growth & development , Humans , Incidence , Infant, Newborn , Infectious Disease Transmission, Vertical/prevention & control , Infectious Disease Transmission, Vertical/statistics & numerical data , Male , Pneumonia, Viral/mortality , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2 , Sexual Behavior/psychology , Sexual Behavior/statistics & numerical data , Survival Analysis
19.
Trials ; 21(1): 475, 2020 Jun 03.
Article in English | MEDLINE | ID: covidwho-505882

ABSTRACT

OBJECTIVES: Primary Objective • To test the efficacy of Hydroxychloroquine (HCQ) (400 mg orally daily for 3 days then 200 mg orally daily for an additional 11 days, to complete 14 days) to prevent incident SARS-CoV-2 infection, compared to ascorbic acid among contacts of persons with SARS-CoV-2 infection Secondary objectives • To determine the safety and tolerability of HCQ as SARS-CoV-2 Post-exposure Prophylaxis (PEP) in adults • To test the efficacy of HCQ (400 mg orally daily for 3 days then 200 mg orally daily for an additional 11 days, to complete 14 days) to prevent incident SARS-CoV-2 infection 2 weeks after completing therapy, compared to ascorbic acid among contacts of persons with SARS-CoV-2 infection • To test the efficacy of HCQ to shorten the duration of SARS-CoV-2 shedding among those with SARS-CoV-2 infection in the HCQ PEP group • To test the efficacy of HCQ to prevent incident COVID-19 TRIAL DESIGN: This is a randomized, multi-center, placebo-equivalent (ascorbic acid) controlled, blinded study of HCQ PEP for the prevention of SARS-CoV-2 infection in adults exposed to the virus. PARTICIPANTS: This study will enroll up to 2000 asymptomatic adults 18 to 80 years of age (inclusive) at baseline who are close contacts of persons with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 or clinically suspected COVID-19 and a pending SARS-CoV-2 PCR test. This multisite trial will be conducted at seven sites in Seattle (UW), Los Angeles (UCLA), New Orleans (Tulane), Baltimore (UMB), New York City (NYU), Syracuse (SUNY-Upstate), and Boston (BMC). Inclusion criteria Participants are eligible to be included in the study only if all of the following criteria apply: 1.Men or women 18 to 80 years of age inclusive, at the time of signing the informed consent2.Willing and able to provide informed consent3.Had a close contact of a person (index) with known PCR-confirmed SARS-CoV-2 infection or index who is currently being assessed for COVID-19 Close contact is defined as: a.Household contact (i.e., residing with the index case in the 14 days prior to index diagnosis or prolonged exposure within a residence/vehicle/enclosed space without maintaining social distance)b.Medical staff, first responders, or other care persons who cared for the index case without personal protection (mask and gloves)4.Less than 4 days since last exposure (close contact with a person with SARS-CoV-2 infection) to the index case5.Access to device and internet for Telehealth visits6.Not planning to take HCQ in addition to the study medication Exclusion criteria Participants are excluded from the study if any of the following criteria apply: 1.Known hypersensitivity to HCQ or other 4-aminoquinoline compounds2.Currently hospitalized3.Symptomatic with subjective fever, cough, or shortness of breath4.Current medications exclude concomitant use of HCQ5.Concomitant use of other anti-malarial treatment or chemoprophylaxis, including chloroquine, mefloquine, artemether, or lumefantrine.6.History of retinopathy of any etiology7.Psoriasis8.Porphyria9.Known bone marrow disorders with significant neutropenia (polymorphonuclear leukocytes <1500) or thrombocytopenia (<100 K)10.Concomitant use of digoxin, cyclosporin, cimetidine, amiodarone, or tamoxifen11.Known moderate or severe liver disease12.Known long QT syndrome13.Severe renal impairment14.Use of any investigational or non-registered drug or vaccine within 30 days preceding the first dose of the study drugs or planned use during the study period INTERVENTION AND COMPARATOR: Households will be randomized 1:1 (at the level of household), with close contact participants receiving one of the following therapies: •HCQ 400 mg orally daily for 3 days then 200 mg orally daily for an additional 11 days •Placebo-like control (ascorbic acid) 500 mg orally daily for 3 days then 250 mg orally daily for 11 days MAIN OUTCOMES: The primary outcome of the study is the incidence of SARS-CoV-2 infection through day 14 among participants who are SARS-CoV-2 negative at baseline by randomization group. RANDOMISATION: Participants will be randomized in a 1:1 ratio to HCQ or ascorbic acid at the level of the household (all eligible participants in 1 household will receive the same intervention). The randomization code and resulting allocation list will be generated and maintained by the Study Statistician. The list will be blocked and stratified by site and contact type (household versus healthcare worker). BLINDING (MASKING): This is a blinded study. HCQ and ascorbic acid will appear similar, and taste will be partially masked as HCQ can be bitter and ascorbic acid will be sour. The participants will be blinded to their randomization group once assigned. Study team members, apart from the Study Pharmacist and the unblinded statistical staff, will be blinded. Laboratory staff are blinded to the group allocation. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The sample size for the study is N=2 000 participants randomized 1:1 to either HCZ (n=1 000) and ascorbic acid (n=1 000). TRIAL STATUS: Protocol version: 1.2 05 April 2020 Recruitment is ongoing, started March 31 and anticipated end date is September 30, 2020. TRIAL REGISTRATION: ClinicalTrials.gov, Protocol Registry Number: NCT04328961 Date of registration: April 1, 2020, retrospectively registered FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Antiviral Agents/administration & dosage , Betacoronavirus/drug effects , Hydroxychloroquine/administration & dosage , Occupational Exposure/adverse effects , Post-Exposure Prophylaxis , Adolescent , Adult , Aged , Aged, 80 and over , Antiviral Agents/adverse effects , Ascorbic Acid/administration & dosage , Betacoronavirus/pathogenicity , COVID-19 , Contact Tracing , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Drug Administration Schedule , Female , Humans , Hydroxychloroquine/adverse effects , Incidence , Male , Middle Aged , Multicenter Studies as Topic , Occupational Health , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Randomized Controlled Trials as Topic , Risk Assessment , Risk Factors , SARS-CoV-2 , Time Factors , Treatment Outcome , United States/epidemiology , Virus Shedding/drug effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL